Light perception and signalling by phytochrome A.

نویسندگان

  • J J Casal
  • A N Candia
  • R Sellaro
چکیده

In etiolated seedlings, phytochrome A (phyA) mediates very-low-fluence responses (VLFRs), which initiate de-etiolation at the interphase between the soil and above-ground environments, and high-irradiance responses (HIR), which complete de-etiolation under dense canopies and require more sustained activation with far-red light. Light-activated phyA is transported to the nucleus by FAR-RED ELONGATED HYPOCOTYL1 (FHY1). The nuclear pool of active phyA increases under prolonged far-red light of relatively high fluence rates. This condition maximizes the rate of FHY1-phyA complex assembly and disassembly, allowing FHY1 to return to the cytoplasm to translocate further phyA to the nucleus, to replace phyA degraded in the proteasome. The core signalling pathways downstream of nuclear phyA involve the negative regulation of CONSTITUTIVE PHOTOMORPHOGENIC 1, which targets for degradation transcription factors required for photomorphogenesis, and PHYTOCHROME-INTERACTING FACTORs, which are transcription factors that repress photomorphogenesis. Under sustained far-red light activation, released FHY1 can also be recruited with active phyA to target gene promoters as a transcriptional activator, and nuclear phyA signalling activates a positive regulatory loop involving BELL-LIKE HOMEODOMAIN 1 that reinforces the HIR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light regulation and daytime dependency of inducible plant defences in Arabidopsis: phytochrome signalling controls systemic acquired resistance rather than local defence

We have examined molecular and physiological principles underlying the lightdependency of defence activation in Arabidopsis plants challenged with the bacterial pathogen Pseudomonas syringae. Within a fixed light/dark cycle, plant defence responses and disease resistance significantly depend on the time of day when pathogen contact takes place. Morning and midday inoculations result in higher s...

متن کامل

Regulation of brassinosteroid responses by phytochrome B in rice.

Plant growth and development are coordinately controlled by environmental signals and internal factors. Light signals, mediated by phytochromes, regulate photomorphogenesis by interacting with endogenous programmes that involve multiple phytohormones. Brassinosteroids (BRs) are a group of growth-promoting phytohormones with a crucial role in the light-dependent development of plants. However, t...

متن کامل

The genetics of phytochrome signalling in Arabidopsis.

The application of Arabidopsis genetics to research into the responses of plants to light has enabled rapid recent advances in this field. The plant photoreceptor phytochrome mediates well-defined responses that can be exploited to provide elegant and specific genetic screens. By this means, not only have mutants affecting the phytochromes themselves been isolated, but also mutants affecting th...

متن کامل

A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome.

Light signal transduction in plants involves an intricate series of pathways which is finely regulated by interactions between specific signalling proteins, as well as by protein modifications such as phosphorylation and ubiquitination. The identification of novel phytochrome-interacting proteins and the precise signalling mechanisms that they mediate is still ongoing. In our present study, we ...

متن کامل

The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes

Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 65 11  شماره 

صفحات  -

تاریخ انتشار 2014